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Core Grid technologies are rapidly maturing, but there remains
a shortage of real Grid applications. One important reason is
the lack of a simple and high-level application programming
toolkit, bridging the gap between existing Grid middleware and
application-level needs. The Grid Application Toolkit (GAT),
as currently developed by the EC-funded project GridLab [1],
provides this missing functionality. As seen from the application,
the GAT provides a unified simple programming interface to the
Grid infrastructure, tailored to the needs of Grid application
programmers and users. A uniform programming interface will be
needed for application developers to create a new generation of
“Grid-aware” applications. The GAT implementation handles both
the complexity and the variety of existing Grid middleware services
via so-called adaptors. Complementing existing Grid middleware,
GridLab also provides high-level services to implement the GAT
functionality.

We present the GridLab software architecture, consisting of
the GAT, environment-specific adaptors, and GridLab services.
We elaborate the concepts underlying the GAT and outline the
corresponding application programming interface. We present the
functionality of GridLab’s high-level services and demonstrate
how a dynamic Grid application can easily benefit from the GAT.
All GridLab software is open source and can be downloaded from
the project Web site.
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I. INTRODUCTION

The advocates of Grid computing promise a world where
large shared scientific research instruments, experimental
data, numerical simulations, analysis tools, research, and
development platforms, as well as people, are closely co-
ordinated and integrated in “virtual organizations.” Still,
relatively few Grid-enabled applications exist that exploit
the full potential of Grid environments. This must be largely
attributed to the difficulties faced by program developers in
trying to master the complex interplay of the various com-
ponents like resource reservation, security, accounting, and
communication. Moreover, Grid middleware like Globus
[2], Condor-G [3], and Unicore [4] are still undergoing many
changes, with new software releases appearing frequently.

Dealing with complex and changing programming inter-
faces is one problem. Another is making applications Grid
aware. Unlike single, homogeneous parallel machines or
clusters, Grid environments are heterogeneous and dynami-
cally changing. To run efficiently, Grid applications need to
be scheduled and then executed in such a manner that the
performance of the resources which are actually used are
properly taken into account. Submitting existing application
codes, unmodified, to remote Grid resources may lead to
less than rewarding results. For example, an application
that detects a diminishing communication bandwidth during
runtime could trigger a load-redistribution tool or search for
better suited resources. Traditionally, application program-
mers would have to implement themselves such mechanisms
into their code. This is not only tedious, but usually restricts
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the code to one specific Grid middleware package. This
runs contrary to the very nature of grids, which imply a
heterogeneous environment in which applications must run.
In order to be effective, a Grid application must be able to
run in any environment in which it finds itself. Ideally Grid
applications would discover required Grid services at run-
time and use them as needed, independent of the particular
interfaces used by the application programmer.

Even with the right Grid resources and middleware in
place, a further step is needed for applications. Research
must be concentrated on the development of high-level
application-oriented toolkits that free programmers from the
burden of adjusting their software to different and changing
Grid resources, and middleware packages with their release
history. Our Grid Application Toolkit (GAT) provides the
missing link between the application level and the various
Grid middleware packages. The core idea of GAT is similar
to that of the well-established Message Passing Interface
(MPI) [5] message passing standard, but at a much higher
(Grid) level. GAT has the following properties:

• ease of use;
• support for different application programming lan-

guages;
• support for different Grid middleware, even

concurrently;
• mechanisms for the same application (source) code to

run on a variety of systems ranging from laptops to
HPC resources;

• orientation toward dynamic and adaptive Grid-aware
applications.

If Grids are to become successful outside academia, it is im-
portant to lower the coding effort for Grid application pro-
grammers. Currently, the coding effort for a simple program
that only copies a file from A to B ranges from approxi-
mately 130 lines of code in the case of OGSA [6] to about
100 lines when using native Globus-GASS [2] interfaces (the
full source code is shown in Figs. 13 and 14). This large
amount of code is needed for the many parameters that can
be tuned for the specific setting in use. In many cases, how-
ever, the best parameter settings can be determined automat-
ically so that the application does not need to bother. With
the GAT library, the above file transfer example can be per-
formed with just two calls and some lines of error checking
and handling. The resulting code in Fig. 1 is rather self-ex-
planatory. It maintains at least the same functionality as the
OGSA and Globus approaches. More than that, the code can
be used in many environments without change.

Of course, the Grid middleware-dependent code (Globus,
OGSA, Unicore, etc.) still exists in our solution, but it is
hidden from the application programmer inside the GAT li-
brary. Adjustable parameters are automatically optimized,
based on available information on the current environment.
Overall, GAT provides an easy and high-level application
programming interface (API) for programming Grid-aware
applications.

In Section II we discuss typical, dynamic Grid application
scenarios and their required, Grid-related functionality. Our
GAT has been designed to provide such functionality. Its ar-
chitecture is outlined in Section III, and its API in Section IV.

Fig. 1. Codeexample: GAT API example using theC++ language bindings.

We discuss APIs of existing Grid middleware in Section V.
Section VI concludes.

II. DYNAMIC GRID APPLICATION SCENARIOS

Design and implementation of the GAT have been driven
by a number of important application use cases from the in-
tended user community. Common to all these use cases are
simple-looking scenarios which have rather complex imple-
mentations in terms of interactions between the user applica-
tion and the Grid services and resources. Such scenarios are
as follows.

• The user starts an application.
• The application notifies the user about status changes.
• The user controls the application.
• The application spawns a subtask.
• The user migrates a running application.
• The user requests visualization of result data.

In most of these scenarios the application itself becomes
an active entity similar to Web portals, interacting with Grid
services and resources. In the following, we will describe the
first scenario in detail (Section II-A), providing insight into
the complexity of the required operations. Two other sce-
narios (Sections II-B and II-C) will be described only briefly
to further outline the scope of the GAT. Sections II-D, II-E,
and II-F describe important recuring elements of various sce-
narios in more detail, to emphasize the complexity of the un-
derlying service activities.

A. Starting a User Application

Usually, the application is initially submitted to some
Grid compute resource by specifying a job description
and triggering its computation. This potentially involves
Grid services responsible for resource discovery, resource
management, authentication, authorization, process man-
agement, and data management. Data output files created by
the application may get names in a global namespace, in ad-
dition to the locally valid physical file names. The individual
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Fig. 2. Starting a user application.

steps taken are illustrated in Fig. 2, which is based on the
GridLab software suite.

1) A user contacts and logs into a Web portal as his inter-
face to the Grid environment.

2) The user requests an application startup via the portal
and specifies the name and location of executable,
parameters, environment, resource requirements,
and input data files to a resource manager [e.g., the
GridLab Resource Management System (GRMS)].

3) The resource manager uses some resource discovery
mechanism or service (e.g., iGrid in GridLab) to
discover suitable resources for execution of the
application.

4) The resource manager selects the “best” resource,
with the help of an adaptation Grid component (e.g.,
Delphoi in GridLab).

5) The resource manager uses the replica service to
transfer the executable and input data files to the target
resource.

6) The resource manager prepares the application envi-
ronment and starts the executable with the specified set
of parameters.

7) The application, now running, starts producing data,
and creates physical data files on the host system.

8) The application creates entries in the global file name-
space of the replica system for its data files.

B. Migrating a Running Application

In this scenario, a running application should be migrated
from one resource to another and continue its computation
without any loss of information. The migration of applica-
tions requires the re-creation of the application status and
data on the remote side. Given the heterogeneity of Grid en-
vironments, hardware architectures, operating systems, and
middleware frameworks, the most feasible way of migration
in a Grid is application-level checkpointing [7]. Here, the ap-
plication itself contains some extra code to write the com-
plete set of status information to files and to restart from these
files upon resumption of execution.

At a certain point in time, some entity (e.g., a user via the
portal) decides to trigger the migration process. In turn, an
application checkpoint is requested. The application writes

its checkpoint files and terminates. Information about the cre-
ated checkpoint files needs to be known afterwards for re-
suming the computation. Besides the writing of checkpoint
files, migrating an application is similar to starting a new user
application, while the resource manager has to find another
computing resource.

C. Visualization of Result Data

Grid applications can produce large amounts of result data
files on the resources on which they are running. Visualizing
these results can be performed as follows, using GridLab’s
visualization service. A running application registers its
output directory with the replica catalog service, providing
a mapping from logical file names to physical output files.
Once the simulation finishes, the Web portal (monitoring
the application status) invokes the visualization service. The
visualization service queries the replica catalog and retrieves
the physical location of the output directory from the user’s
logical home directory. It then generates images and an
HTML page for data visualization. The result (e.g., Fig. 3)
is published via the portal’s job output page.

D. Selecting the “Best” Resource

An important, recurring issue in Grid application scenarios
is the selection of the most suitable resource to execute a sub-
mitted job. The resource manager (in GridLab, GRMS) bases
its decisions on given metrics that may become rather com-
plex, depending on multiple parameters. The GRMS needs to
collect the values for these parameters from various sources.
The GRMS may consult additional services to gather the pa-
rameter values and to perform the actual decision. Among
these external services may be the following.

• A Grid information system (GIS) (e.g., GridLab’s
iGrid) for a list of available resources.

• A Grid monitoring system (e.g., GridLab’s Mercury)
for resource status information like system load, disk
space, performance, queue wait time, etc.

• A decision making service (e.g., GridLab’s Delphoi)
to select the “best” resource according to some metric.
The service may base its decision on the delivered re-
source parameters, on additionally gathered data, on
historic data, on knowledge base data, or on artificial
intelligence algorithms.

• A Grid authorization service (e.g., GridLab’s GAS) to
determine whether users are authorized to use the se-
lected resource.

Using external services, the resource management system
stays independent of application- and environment-specific
configurations and metrics.

E. Security

Another important, recurring issue is security, including
both authentication and authorization. Currently, the Grid Se-
curity Infrastructure (GSI) [8] is the most commonly used
mechanism for ensuring authentication. All communication
channels are usually GSI-secured (e.g., by using gSOAP [9],
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Fig. 3. GridLab visualization service presents result data via a portal Web page.

[10]), and GSI credentials with flexible lifetime and validity
allow services to act on the users behalf.

Unfortunately, authorization is not handled by a general
Grid framework thus far. Usually, resources or services
authorize users following their own, locally implemented
policies, mostly relying on a Grid mapfile, listing all GSI
credential subjects which are allowed to use the resource or
service in question.

In the long run, Grid Authorization Services (such as
GridLab’s GAS) are supposed to handle the management
of security policies. GAS is then contacted during each
service or resource invocation, and authorizes or denies the
operation depending on the installed policies and the user’s
security credential. Within a Grid API like the GAT, the
provision of user credentials to services has to be taken into
account, too.

F. Resource Virtualization

One of the most powerful paradigms of Grids is virtual-
ization, abstracting resources like computational entities and
data files from the physical entities. The virtualization of re-
sources in Grids hides the actual physical resource behind a
well-defined interface. A resource management system may

virtualize physical compute resources, and a file manage-
ment system may abstract physical file resources. Virtualiza-
tion of physical file locations is accomplished through replica
management systems, which are widely used in Grids [11].
A replica system provides a global namespace for files and
the ability to map entries in that namespace to a physical
location, possibly one of many. This frees the application
and service programmer from the need to track remote phys-
ical locations of files across a Grid. Grid APIs like the GAT
should, thus, support virtualized interfaces to Grid resources.

III. GAT ARCHITECTURE

The diversity of deployed technology is simultaneously
one of the major strengths and challenges of the Grid. The
range of available Grid services is wide and constantly
growing. Although the Global Grid Forum (GGF) aims at a
global standardization for these services, these efforts will
take time; will not cover all Grid aspects; will not neces-
sarily simplify the use of Grid middleware (at the application
level); and will not cover all Grid middleware systems such
as research projects, proprietary systems, etc.

Also, Grid environments are dynamically changing envi-
ronments—that is, resources and services may dynamically
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Fig. 4. GAT framework software architecture.

join or leave the Grid. Various versions of services may co-
exist in a single Grid, and various services providing similar
capabilities may be available.

The GAT is designed to handle this diversity of Grid mid-
dleware. In its current design, the GAT is split in two parts:
the GAT engine and the GAT adaptors. The API exposed to
the application is, as far as possible, independent of the Grid
middleware service used. All GAT applications link against
the GAT engine, which provides proxy calls for all GAT
API calls. The GAT API is designed to be simple and stable
and to provide the application with calls for essential Grid
operations.

The GAT adaptors are lightweight modular software
elements which provide access to these specific capabilities.
Adaptors are used to bind the GAT engine to the actual mid-
dleware service providing the capabilities. The interfaces
between the GAT engine and the GAT adaptors mirror the
GAT API. When called via the GAT API, the GAT engine
dynamically selects from the currently available adaptors
implementing the specific capabilities and forward the API
request.

The GAT software architecture is layered, allowing a loose
coupling of various software components. In particular, every
application written using the GAT consists of four software
layers (see Fig. 4).

• The application layer. This layer contains all of the
application-specific code that uses functions from the
GAT API.

• The GAT layer. This layer is represented by the GAT en-
gine. It provides the GAT API for the application layer,
and translates all API calls into calls to the adaptor

bound to the corresponding API function. The adap-
tors glue the GAT API calls to the actual functionality
provided by the Grid middleware service.

• The service layer. This layer represents the capabil-
ities provided by the Grid environment upon which
the application actually runs, such as implemented by
the GridLab project, or provided by middleware like
Globus.

• The core layer. This layer represents the resources
available in the Grid, such as operating system services
or infrastructural components, compute resources, and
data sources.

Both the application layer and the GAT layer execute in
the user space of the application. The GAT adaptors form
the interface from the user space to the capability space, con-
sisting of the service layer and the core layer. The service and
core layers expose the capabilities provided by the available
resources.

A. GAT Engine

The GAT engine is a runtime library exposing the GAT
API to the application. It represents a unified interface to the
Grid, and abstracts the application from the ever-changing
Grid infrastructure. The GAT engine consists of three logical
parts.

• The objects providing the GAT API functions: This
part provides the glue that maps the API function
calls executed by an application to the corresponding
adaptor-provided functionality. It consists of a very
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thin abstraction layer for each of the GAT API func-
tions which selects the right adaptor and dispatches the
function call to this adaptor.

• The adaptor management subsystem: This part is
responsible for loading available adaptors, managing
their lifetime, and maintaining a capability registry
that allows the GAT API subsystem to select the right
adaptor. Each loaded adaptor registers its capabilities
(groups of related functionality) with the GAT en-
gine. The capability registry stores mappings between
the adaptors and their provided capabilities. Every
capability has a set of metadata attached (so-called
preferences), allowing further control within the
adaptor selection.

• The utility objects and functions: This part primarily
consists of a set of utility functions for data handling
(e.g., for lists and tables), as well as error handling and
reporting. These are not necessary in all implementa-
tion languages.

The GAT engine exposes two different sets of APIs: the
API exposed to the application, and the API exposed for
connection to the adaptors. This approach supports decou-
pling the application from the underlying Grid middleware
and connecting it with any middleware service supporting
the appropriate functionality. The GAT engine is supposed
to be an extremely thin layer, providing an efficient way to
switch between different implementations of the capabilities
provided by the GAT API. All capability logic and all Grid
service interactions are implemented in the GAT adaptors,
which is described in the following section.

B. Adaptors

As described above, GAT adaptors are lightweight mod-
ular software elements which provide access to specific
capabilities. The capabilities are defined by the GAT API
definition. The engine chooses adaptors on demand in order
to satisfy the capabilities required by the application.

The interface between the GAT engine and adaptors is
called the Capability Provider Interface (CPI). This interface
mirrors the GAT API itself. Upon calls to the GAT API, the
GAT engine dynamically selects from the currently available
adaptors which provide access to the corresponding capabil-
ities and forward the API request to the chosen adaptor.

An adaptor is compiled against the GAT engine and
linked as a shared library (on platforms which support this).
On loading, the adaptor’s initialization function is called,
in which the adaptor registers the capabilities it provides
access to with GAT engine. This includes specification of
the implemented interface (the GAT object); the functions
that implement each method in this interface; and a set
of properties for that adaptor, such as supported security
models or resource identifier schemes such as URLs. These
properties are used by the GAT engine to choose between
adaptors providing the same capabilities.

The actual implementation of the individual methods de-
pends on the kind of infrastructure to which the adaptor must
provide access. For example, the methods in the GATFile
reference adaptor are implemented using SOAP calls to two

GridLab data management Web services: File Movement and
the File Browsing. The File Movement service provides syn-
chronous and asynchronous third-party file transfer using the
GASS libraries of the Globus Toolkit. The File Browsing ser-
vice provides general file information as needed by the GAT-
File class. Example information includes file modification
time, file size, and readable/writable flags.

As an adaptor usually binds to one capability provider (like
a Grid service or library) at a time, the implementation of
adaptors is rather simple and straightforward. In fact, this im-
plementation does not significantly differ from the code an
application programmer would have used if coding directly
against the Grid environment. However, given that adaptors
may often be reused across multiple applications, there is ad-
ditional motivation for programmers to carefully implement
fail safety, clean error messaging, good parameter defaults,
data caching, performance tuning, etc. Hence, an adaptor
may abstract rather complex Grid interactions, for the benefit
of the end user.

C. Integrating Existing Middleware Services

The purpose of the GAT is to decouple the application
from the available Grid middleware and its services. The
GAT engine is supposed to work in various environments,
ranging from an offline laptop to an international Grid. For
each framework, a set of adaptors is needed to provide the
respective functionality. For offline machines (like developer
laptops), resources from the core layer can be accessed
directly. Adaptors to core capabilities can, thus, provide
access to the machine itself on which the application is
running. Such adaptors provide useful fallback solutions
for local execution of a GAT application.

For granting access to resources within a Grid envi-
ronment, adaptors need to bind to services, like the ones
provided by standard Grid middleware such as Globus or
Unicore.

For dynamic application scenarios like the one presented
in Section II, the GridLab project has developed a set of
high-level services and corresponding adaptors, providing
advanced functionality for the GAT. Using these high-level
services demonstrates the potential of writing GAT applica-
tions. However, it should be noted that the GAT is also fully
functional without GridLab’s services, as long as any com-
plete set of adaptors is available. The GridLab services, as
used in this manuscript, are the following.

• GRMS. The GRMS [12], [13] is a resource broker, im-
plementing multicriteria job scheduling mechanisms
adhering to user needs, VO policies, and resource-local
policies. The GAT can use GRMS to start or migrate
applications on a Grid.

• GAS. The Grid Authorization Service [14] manages au-
thorization policies in a Grid. The GAT can use GAS in-
directly via GRMS to determine which Grid resources
are accessible to a user who wants to run an application.

• iGrid. The GridLab Information Services (iGrid) [15],
[16] extend the MDS information system by adding
information about services, available software, users,
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firewalls, and recognized certificate authorities. The
GAT can use iGrid for resource discovery purposes.

• Replica Manager Service. The Replica Manager Ser-
vice [17] maintains a replica catalogue, mapping
logical files to physical copies. The GAT can use the
replica manager to access, locate, select, and move
replicated files.

• Data Movement/Access. The Data Movement Service
[18] implements file transport using protocols such as
GridFTP or scp. The GAT can use the Data Access
Service [19], [20] to support remote file access.

• Delphoi. The Delphoi service [21] provides monitoring
data and performance predictions for Grid resources
like network bandwidth, CPU utilization, or job waiting
time in queueing systems. The GAT uses Delphoi indi-
rectly, for guiding scheduling decisions in GRMS or for
optimizing replica selection.

• Mercury. The Mercury monitoring service [22] mon-
itors the status of compute resources and running
jobs. The GAT can use Mercury either indirectly via
Delphoi or directly for signaling events like triggering
checkpointing.

IV. GAT API

The GAT API is divided into several subsystems which
handle different aspects of Grids. These aspects include data
management and access, resource management, monitoring
and event handling, and information management. These
subsystems are accompanied by a utility subsystem, pro-
viding convenience functionality; and the base subsystem,
providing an interface to the GAT engine itself.

The specification of the GAT API is object oriented (OO)
[23]. Hence, we describe the API in terms of objects and
methods to these objects. However, the current implementa-
tions is in C and proves that bindings to non-OO languages
are possible (as has been our intention from the beginning).
A C++ wrapper to the C implementation is largely finished;
wrappers to Fortran, Perl, and Python are planned
for the near future. An independent native implementation
within Java is within early stages of development.

The API description includes a number of small code ex-
amples. These are for brevity in C++ and have been chosen
to illustrate the usage of certain objects or some subsystem,
and are not necessarily reflecting real scenarios.

A. GAT Base Subsystem

The base subsystem of the GAT API defines general
objects and methods which support interaction with the
GAT engine. This subsystem also provides the base object
(GATObject) which is inherited by all other objects of the
API.

1) GATObjectClass: TheGATObject class is the an-
cestor of all (nonutility) classes in the GAT API. It is used to
provide common functionality needed by all objects of the
API and helps to achieve a common look and feel throughout

Fig. 5. Code example: usage of GATSelf.

the API. Methods of the GATObject class are limited to ad-
ministrative functions such as comparison, cloning, destruc-
tion, and retrieving of any GAT object instance.

In particular, the GATObject class provides the fol-
lowing methods.

• Equals tests two GATObject instances for equality.
• Destroy destroys a GATObject instance, and frees

memory and associated resources allocated by this
instance.

• GetType returns the type of the GATObject
instance.

• Clone creates a copy of the given GATObject
instance.

2) GATSelf Class: The GATSelf class represents the
current process and, hence, the GAT application itself. This
class is singleton, meaning that there exists only one instance
of this class per application instance. This instance is ob-
tained by the GATSelf.GetInstance method.
GATSelf supports the handling of an application as a

GATJob (see the Resource Management subsystem, Sec-
tion IV-B, and Fig. 5) and can be used to change various
properties of this process. Examples include whether it is
checkpointable or not and what metrics or events it can
report (see Event Management subsystem, Section IV-D1).
The GATJob instance which is made available through
GATSelf can also be advertised (see Information Manage-
ment subsystem, Section IV-E), as well as used to access the
corresponding job properties.

Operations:

• GetInstance, a class level operation, which allows
one to access the single existing GATSelf object in-
stance.

• GetJob gets theGATJob instance which is associated
with this process. The returned GATJob can be adver-
tised to other jobs.

• AddRequestListener adds a listener for a specific
GATRequest. See the Event Management Subsystem
description (Section IV-D1) for more details.

3) GATContext Class: The GATContext class rep-
resents the state and security context of an application. It
is used to encapsulate a number of GAT API method calls
into a common scope, including adaptor loading preferences,
security settings, and status code management.

Operations:

• AddPreferences, GetPreferences, Re-
movePreferences are used to manage the default
adaptor loading preferences for GATObjects created
within this GATContext. These preferences are used
by the engine, whenever no explicit preferences are
specified.
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• AddSecurityContext, RemoveSecurity-
Context, GetSecurityContexts, GetSe-
curityContextsByType are used to manage the
security settings used for operations executed within
this GATContext.

• GetCurrentStatus, SetCurrentStatus
are used to access the current status of the GATCon-
text. This status is updated in all GAT API calls
executed inside this GATContext.

4) GatStatus Class: The GATStatus class repre-
sents an error, trace, audit, or information message from a
GAT operation or an underlying adaptor. This class is used
to provide audit trails, allowing the user to trace (and the
developer to debug) the sequence of events which happened
in any particular GAT operation. Since the GAT engine and
adaptors may perform several independent operations, each
of which may have associated errors or status messages,
a GATStatus instance forms a node in a tree of GAT-
Status instances, reflecting the complete execution path
of any API call.

Operations: The essential GATStatus operations are
for retrieving messages and status codes and for navigation
in the call tree. Additionally, several additional methods are
used by the GAT engine to construct and initialize new GAT-
Status object instances.

• GetMessages returns a list of messages (strings) as-
sociated with this GATStatus instance.

• GetStatusCode gets the status code of this GAT-
Status instance.

• GetChildren gets the child GATStatus instances
of this instance.

• GetParent returns the parent GATStatus of this
instance.

The typical use cases for this object is as follows.

• The application invokes GATContext.GetStatus
to get the GATStatus object, created during the last
GAT operation.

• The application gets the messages associated with this
GATStatus object instance (these are strings) by
invoking GATSTatus.GetMessages, and makes
them available to the user.

• The application receives the numerical status code
associated with this GATStatus object instance by
invoking GATStatus.GetStatusCode and simi-
larly makes this information available.

• The application invokes GATStatus.GetChil-
dren and, for each child, repeats the above procedure.

B. Resource Management Subsystem

The resource management subsystem deals with resources
provided by the Grid. It provides functions for both resource
discovery and job management. The complete scheme for
job descriptions within GAT is designed to support mapping
into the job description languages typically used on the Grid;
e.g., those defined by Globus (RSL) or Condor (ClassAds), or
those currently being defined by the JSDL [24] group within
GGF.

Fig. 6. Code example: spawns a subtask.

From the GAT point of view, job submission is a simple
four-step process:

1) create a description of the software to be submitted;
2) create a description of the hardware requirements;
3) create a description of the software requirements;
4) submit the job to a resource broker.
In the first step, basic details about the impending job

are provided in a GATSoftwareDescription. Exam-
ples include the location of input and output files; the han-
dling of stdin, stdout, and stderr; command line arguments;
and environment variables.

In the second step, the GATHardwareResource-De-
scription contains a set of requirements which must be
met by the hardware on which the job will run. Typical pa-
rameters are the number of CPUs and the required amount of
memory or disk space.

There are two common methods for dealing with executa-
bles in a heterogenous Grid environment. The first involves
compiling the application before submission and moving the
executable to the remote site. The second involves submit-
ting a shell script to the remote machine, which downloads
the source code and builds the application. In both cases, a
set of libraries must be installed on the machine. For the latter
case, a compiler must also be installed to build the appli-
cation. Such constraints are described in the third step: the
GATSoftwareResourceDescription.

The final step is to forward all of these data and constraints
to the resource broker, which selects a matching site and sub-
mits the job. The result of this step is aGATJob object, which
allows for tracing and/or changing the job’s status, shown in
Fig. 6.

Normally, jobs are submitted via portals or other tools.
While job submission functions are well known to users of
other batch computing environments, programmers of these
environments may not be familiar with functions for resource
discovery. However, as described in Section II, there are sev-
eral scenarios where these functionalities are essential.

Since the API for the Resource Management subsystem is
somewhat more extensive than for the other subsystems, we
will not list it here completely. Instead, the core objects with
the most relevant methods are listed here. The remainder of
the subsystem similarly reflects the general GAT design goals
of simplicity and ease of use.

1) GatJobClass: TheGATJob represents a Grid appli-
cation and allows one to check its status and to interact with
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Fig. 7. Code example: migrate the spawned subtask j from Fig. 6.

that application. For example, a spawned subtask can be re-
quested to checkpoint and terminate.

The GATJob class provides the following methods.

• GetJobDescription returns the description of the
job, similar to the description used to submit the job.

• GetState returns the current status of the job, such
as RUNNING, SCHEDULED, etc.

• GetJobID returns a globally unique identifier for the
job, which can be used to refer to the job in another
GAT application.

• Checkpoint requests the job to perform a check-
point.

• Clone requests a complete clone of the job—after suc-
cess, the job is running twice.

• Migrate requests the migration of the job, shown in
Fig. 7.

• Stop requests termination of the job.

2) GATResourceBroker Class: The GATRe-
sourceBroker is the most central object in this sub-
system and is responsible for all interactions with resources.
It allows one to search for resources, to reserve them for job
submission, and to submit jobs to it.

The GATResourceBroker class provides the fol-
lowing methods.

• FindResource returns a list of GATResources
matching the given criteria.

• ReserveResource reserves a resource matching
given criteria for later job submission, if possible.

• SubmitJob submits a job to a specific resource, or to
some resource matching the given criteria, and returns
a GATJob object.

3) GATResource Class: The GATResource class
represents a Grid resource as, for example, returned by a
resource broker after a search for free resources. The class
can be used to get reservations on that resource and can be
given to a GATResourceBroker to submit a job to it.

The GATResource class provides the following
methods.

• GetResourceDescription returns the descrip-
tion of the resource, e.g., number of CPUs, available
memory and disk space, installed software, etc.

• GetReservation performs a reservation for later
job submission, if possible.

4) GATReservation Class: This class is a simple
placeholder for a reservation made on some specific
resource. The GATReservation class provides the
following methods: GetResource returns the GATRe-
source object representing the reserved resource.

C. Data Management Subsystem

The data management subsystem is not as extensive as the
resource management subsystems, but covers a wide range
of capabilities. Hence, we will describe the capabilities and
their usage in some detail, but abstain from a detailed de-
scription of the API calls. The data management subsystem
covers three areas: interprocess communication, remote file
access, and file management.

1) Interprocess Communication: The GATPipe is the
basic abstraction for interprocess communication. It repre-
sents a bidirectional communication channel between two
processes.

In the TCP/IP world, the GATPipe corresponds to a con-
nection. Like a TCP connection, the GATPipe connects two
endpoints (GATEndpoints), and is always bidirectional.
Endpoints support two functions: connect and listen.
The former is used to connect to a remote process, while
the latter is used to wait for incoming connections. Both
operations return a GATPipe, which can then be used for
communication.

Like most objects in GAT, GATEndpoints may be “ad-
vertised” (see Section IV-E). Thus, we can publish them and
search for suitable endpoints in the advertisement databases.
This property significantly reduces the complexity of con-
nection establishment.

Our distinction between endpoints and connections differs
from that of BSD1 sockets. For BSD sockets, the same under-
lying abstraction (sockets) is used for both connection estab-
lishment (connect and accept) and communication (read and
write) operations.

To further simplify usage on the application side, it is
planned to eventually extend GATPipe with support for
typed read and write operations, as also known from MPI
[5]. However, the IPC capabilities of the GAT are primarily
intended to provide connection-oriented communication
between application processes. In Grids, this already is a
challenging problem in the presence of firewalls and not
directly addressable nodes [25].

2) Remote File Access: There are three basic types of re-
mote file access:

1) moving the file to local storage and performing local
file access;

2) communicating with a remote site using a file format
independent protocol;

3) communicating with a remote site using a file format
dependent protocol.

The first method is the simplest approach and sufficient
for a wide range of applications. Its efficiency depends on
the ratio between file size and the amount of data which is
actually read from the file. For some applications, it might
be sufficient to read just a few kilobytes of a multigigabyte
file. In this case, the overhead is large and it would be much
more efficient to only transfer the required parts of the file.
This is the motivation for the latter methods.

The second method is in widespread use as well, although
it is sometimes hidden from the user (e.g., in the case of

1[Online]. Available: http://www.bsd.org
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Fig. 8. Code example: read a remote physical file.

NFS). GridFTP supports an extension implementing read,
write, and seek operations for remote files. The data is trans-
ferred via the GridFTP protocol. This approach works well
for low-latency networks, but in wide area networks, the pro-
tocol overhead might dominate the execution time. It is best
suited for a few medium-sized or large read requests.

As part of the GridLab project, we have developed a re-
mote file access component [26] which can extract regular
subsets from remote files very efficiently.

File-dependent protocols are relatively infrequently used,
as the requirement for installing a different service or plugin
for each file format can generate a large administrative over-
head. Nonetheless, such systems can be very efficient, as they
can be optimized for special file access patterns [19], [26].

The GAT supports the first two methods for remote file ac-
cess because they apply to almost all scenarios and are sup-
ported on most machines. GAT provides two classes dealing
with files. The first, GATFile, provides functions which
work on files as a whole, such as query file size or moving
the file in the Grid. The second,GATFileStream, provides
access to the contents of the file using read, write, and seek.
An example is shown in Fig. 8.

The GATFile class includes the following methods
(among others), which are self-explanatory:

The GATFileStream class includes the following
methods (among others):

3) Replica Management: A frequent Grid application
scenario deals with input files. After running several Grid
jobs reading such a file, multiple copies of the file are
distributed across various locations of the Grid. Even for a
single user, it can be a difficult task to track the locations of
these multiple copies.

Replica management systems provide mechanisms for
managing distributed files and their copies. Many systems
distinguish between physical and logical file names, as
described earlier in Section II. In replica systems, logical file
names provide a handle for a group of replicas of one file.

For the above example, one might create a logical file
name identifying this set of results, e.g., experiment-
data-001. Several physical file names would be associated

Fig. 9. Code example: read a logical file.

with this logical file name, describing the locations where
copies of the data is stored.

While the advantages for single users is clear, there is spe-
cial benefit for the use of such systems by large scientific
communities. A user can now browse or search a common
catalog where copies of required data are stored and pick the
copy which provides the best access performance.

The Storage Resource Broker (SRB) [27] is an example of
such a system. It provides interfaces for browsing the cata-
logs, as well as moving replicas between the sites.

The GAT provides access to such systems with the GAT-
LogicalFile object. It provides methods for browsing
catalogs, creating new replicas at user-specified sites, and ac-
cessing the individual replicas, shown in Fig. 9.

The GATLogicalFile class provides the following
methods (among others):

D. Event and Monitoring Subsystem

The GAT event and monitoring subsystem allows the ap-
plication to send and receive events, such as events generated
by (e.g.,) a Grid monitoring service (e.g., Mercury). The pro-
gramming model for this subsystem is based on subscriptions
and callbacks. The application can subscribe to events of a
certain type (events with a certain “metric”) and register call-
backs to handle incoming events of this type. For example,
an application can assert its ability to respond to a check-
point event and register a callback for performing the check-
point upon receiving an incoming requests. The application
can also create its own events with self-defined metrics and
insert them into the Grid monitoring system. This allows ex-
ternal entities to monitor the application, and to obtain, e.g.,
performance and simulation progress information.

The following paragraphs describe two example scenarios
in GAT terms. The first example illustrates subscription to
an event with a specific metric and the retrieval of a corre-
sponding event. The second example considers the creation
of a custom event.

1) Event Retrieval: To subscribe to specific events, the
application creates a GATRequestListener object. This
object is then passed to GATSelf.AddRequestLis-
tener, parameterized as a command request listener with
the name checkpoint. This information defines the event
metric.
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Fig. 10. Code example: react to a checkpoint event.

At appropriate points in the flow of control, the appli-
cation invokes GATContext.ServiceActions (in
a single-threaded implementation). This method iterates
overall requests which have been received in the mean-
time and invokes the ProcessRequest operation on the
GATRequestListener, thus passing information about
the received event. The application can later asynchronously
respond to the event; e.g., to signal success or failure in
processing the event. An example is shown in Fig. 10.

2) Event Creation: The procedure for creating events
is very similar to the sequence described above. The ap-
plication creates a GATMetric object describing the
event to be issued and fires that event by calling GAT-
Self::FireEvent (metric). The engine triggers the
matching adaptor to the monitoring services, which injects
that event into the system.

E. Information Management Subsystem

The GAT’s connection to a generic GIS is the GAT adver-
tisement subsystem, which is represented primarily by the
GATAdvertService object. Such a service is a persistent
external repository for any information which may be useful
outside the application itself. This information may include,
for example:

• files published by the application;
• port and protocol information for contacting the appli-

cation online;
• information about jobs spawned by the application.

To publish application-specific information to a GIS, the
GATAdvertService provides a means for annotating the
appropriate GATObjects with arbitrary metadata and for
storing this information in a hierarchical namespace within
the GIS. This namespace is also called the Advertisement
Directory (AD). The nodes in the AD are tuples containing
the absolute path in that namespace, the associated GATO-
bject, and the attached set of metadata. The metadata is
considered to be a list of key-value pairs, where keys and
values are strings.

For inclusion in the GATAdvertService, GATO-
bjects must implement the GATAdvertisable in-
terface. The GATAdvertisable class requires the
implementation of the methods Serialize and De-
Serialize. This allows to attach the serialization of
GATObjects to a node in the AD, and to reinstantiate this
object on retrieval from the AD.

The namespace of the advert directory resembles a stan-
dard file system namespace. This includes support for the
notions of absolute and relative paths, root directory, current
working directory, and home directory.

The AD supports the search for advertised objects in the
current directory (recursively or nonrecursively) by lookups
in the metadata. In order to initiate a search operation, a list
of key-value pairs (query metadata) needs to be created. This
list will be matched against the stored metadata of the objects
in the GATAdvertService. The value elements in the
query meta data support regular expressions to be interpreted
during query execution, such as http://.+\.org:\d+/data/.+ to
specify existing, empty, or matching metadata values.

Metadata keys starting withGAT_ are reserved for internal
use, such as storing the path to the node GAT_PATH, the type
of the published object GAT_TYPE, or the name of the node
GAT_NAME. These special metadata attributes are generated
by the GAT engine and are always available to the user, and
may also be searched.

The GATAdvertService provides the following
methods:

• Add publishes a new node in the AD.
• Delete deletes the specified node from the AD
• GetMetaData gets the complete set of metadata

from the specified node.
• GetAdvertisable retrieves theGATObject asso-

ciated with the specified node.
• Find searches (recursively or nonrecursively) for

nodes matching the given specification.
• SetPWD and GetPWD handle the users current

working directory in the AD.

Fig. 11 shows example code to advertise a task; Fig. 12
shows the code to kill this task by another application.

F. Utility Subsystem

The GAT API contains a number of classes providing
general, convenience, and/or utility oriented methods. This
section gives a short overview of these classes.

The implementation and presence of these classes is highly
language dependent. For example, in the case of Java, several
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Fig. 11. Code example: advertise a spawned subtask.

Fig. 12. Code example: kill an advertised subtask.

of these classes will not be implemented, as Java provides a
native equivalent.

1) GATTime and GATTimePeriod Classes: The
GATTime and GATTimePeriod classes handle a concrete
time and a period of time, respectively. They allow the
integration of timing values into the serialization framework
provided by the GAT engine and also support the specifica-
tion of resource reservation requests.

2) GATLocation Class: The GATLocation class
was introduced to encapsulate an arbitrary URL. It supports
verifying the correctness of any given URL by applying the
rules defined in Request for Comments (RFC) 1738 [28]
and also extracting or modifying any part of a URL. For
example, this class is used inside the GAT API wherever a
physical file location needs to be be specified.

3) GATTable Class: The GATTable class is a general
ordering container. It holds arbitrary key-value pairs, where
the keys may be of any type which provides an ordering func-
tion. The GATTable may be used to store a wide spectrum
of data types as strings, integers, GATObjects, or struc-
tures. The GAT API uses this class to store data collections,
preferences, metadata, configuration data, etc.

4) GATSecurityContext Class: The GATSecu-
rityContext class stores security information necessary
for authentication and authorization purposes. For example,
it may hold user names and passwords, certificates, or the
location of the remote credential server to use. The GATSe-
curityContext is used by the GATContext.

V. RELATED WORK

The APIs of existing Grid middleware are both heteroge-
neous and rapidly evolving. For example, the Globus toolkit
[2] currently provides the de facto standard Grid middleware.
Its API has been designed as fully featured, enabling access
to all details of a Grid, its resources, and services. A draw-
back of this approach is that even simple application require-
ments result in elaborate code. In contrast, the GAT strives
to simplify the API, transferring some control from the user
to the adaptor for a given functionality.

The Open Grid Service Architecture (OGSA) [6] was in-
troduced to unify access to Grid resources in 2002. Although
a big step in the right direction, OGSA still does not prescribe
the actual API of a middleware; it merely facilitates the pro-
tocols by which remote resources can be reached. Likewise,
the Web Service Resource Framework (WSRF) [29] does not
intrinsically contribute to simple and stable APIs. In fact, a
layer on top of these middleware frameworks is needed; this
layer is the target of GAT.

Unicore [4] provides an alternative to Globus. However,
its functionality is restricted to job submission and user au-
thentication. In lacking further functionality like file access
or job steering, Unicore does not provide a real API. Unicore
adaptors are currently being developed for the GAT, allowing
submission of jobs from a running application via Unicore
services. In combination with other GridLab services, this
will broaden the capabilities of Unicore applications.

Condor [30] was designed for job submission to idle work-
stations within a local cluster. Condor-G [3] allows job sub-
mission to Grid machines using Globus. An important reason
for the success of Condor is the approach of transparent
remote execution, using special runtime libraries to relay
system calls to the local machine of the job submitter. Condor
does not need a Grid-related API at all, which is a strong
plus for application developers. A combination of Condor
with GAT functionality could overcome some of its limita-
tions, such as access to Grid resources beyond the job sub-
mitter’s machine, while still keeping the Grid API as simple
as possible.

Another important area of functionality is communication
between multiple processes belonging to a Grid application.
The most widely used API is MPI [5]. MPI has been designed
for classical parallel computing, where high performance is
more important than flexibility and dynamic reconfiguration.
MPIs restrictions in these respects limit its usefulness for
Grid environments. Also, the MPI interface is known to be
very complex. The GAT provides a simple pipe mechanism
for interprocess communication. Unlike MPI, this mecha-
nism is not tuned for tightly coupled applications and pro-
vides only very simple point-to-point communication.

Ibis [31] is a Java-based Grid programming environment,
focusing on both flexibility and efficiency of interprocess
communication. Its communication mechanisms are built
using Java’s method invocation paradigm. Once completed,
the Java version of the GAT will complement the Ibis func-
tionality, forming an expressive, yet simple, Grid API.

ALLEN et al.: THE GRID APPLICATION TOOLKIT: TOWARD GENERIC AND EASY APPLICATION PROGRAMMING INTERFACES FOR THE GRID 545



The Java Commodity Grid (CoG) Kit [32] provides ac-
cess to Grid services from Java, aiming at simplified user
interfaces. Unlike the GAT, the Java CoG Kit offers an in-
terface to Globus-specific, low-level Grid services, such as
GridFTP, GSI, and the MDS. The GAT offers higher level
abstractions like file movement that are independent of the
underlying middleware infrastructure.

The Grid Application Framework for Java (GAF4J) [33]
is an application framework for multithreaded Java applica-
tions. GAF4J replaces thread objects by so-called task ob-
jects that can be executed on remote machines in a Grid.
The GAT, however, has a broader applicability and provides
high-level interfaces to resource management, Grid moni-
toring, information services, remote file access, etc.

The GGF [34] has many groups working on the develop-
ment of Grid APIs for various aspects like resource manage-
ment (DRMAA [35]), remote data access (GridFTP [36]),
application checkpointing (GridCPR [7]), or remote proce-
dure calls (GridRPC [37]). Together with other researchers,
the authors recently have established a new group, called
SAGA [38], addressing a Simple API for Grid Applications.
The primary goal of this group is to develop a standardized,
simple Grid API, blending GAT concepts with input from
other application users and developers within GGF.

VI. CONCLUSION

Grid computing offers promise for a world with many new
opportunities. Grid applications will have the potential to
integrate geographically dispersed compute resources, data
repositories, scientific instruments, and human users. How-
ever, only a few Grid applications have actually been de-
ployed so far. We attribute this largely to the complexity
and rapid changes of the programming interfaces for existing
Grid middleware. For Grids to achieve widespread deploy-
ment, the availability of an API that is both easy-to-use and
platform-independent is of vital importance.

To address these issues, we have presented the GAT,
which has been designed and built by the European GridLab
project. The GAT defines a simple, platform-independent
API to Grid resources and services. The functionality of
the GAT API has been defined to meet the needs of dy-
namic Grid application scenarios. The GAT focuses on
resource management (job submission and migration), data
management (access to files and pipes), event manage-
ment (application monitoring and control), and information
management (application-specific metadata). However, the
GAT does not attempt to cover all possible use cases, thus
favoring simplicity over exhaustive functionality.

The GAT is implemented as a runtime library against
which applications can be linked. The GAT engine imple-
ments the API as a thin wrapper layer which dispatches
incoming API calls to the services which happen to be avail-
able and appropriate within the evolving Grid environment.
Services are made available to the GAT engine via adaptors.

Fig. 13. File copy implementation in Java using OGSA. The
developer has to deal with several aspects in this code. In the first
half, he has to set several parameters concerning the file transfer
(e.g., block size, TCP buffer size, and number of streams), whereas
in the second half he has to deal with the OGSA protocol.

An adaptor provides the interface between a given GAT
functionality and the services which offer corresponding
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Fig. 14. In contrast to the OGSA example, this Globus code does not have to deal with a special
protocol for calling the copy function. It just contains file-copy related calls. Still, there is quite a
lot of code setting up various data structures.

capabilities. Such services might range from basic oper-
ating system calls on a local laptop, to a computing service

provided on an HPC machine. At runtime, adaptors are
dynamically linked into the GAT engine (where the archi-
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tecture allows), allowing dynamic selection of appropriate
services. The GAT can utilize multiple Grid middleware
environments, possibly in multiple versions, at the same
time.

Widespread usage of the GAT also requires embodiments
which are compatible with existing and potential Grid ap-
plications. Therefore, the current implementation of GAT
engine and adaptors is written in the C language, with
wrappers for C++ close to completion, and with Fortran,
Perl, and Python soon to follow. An independent, native im-
plementation in Java is currently under development. With
this set of supported languages, we expect to cover a wide
spectrum of potential application codes. The current set of
adaptors uses both local resources as well as Globus (v2) and
GridLab-specific services, as introduced above. Additional
adaptors for Unicore are currently under development. To
foster openness and widespread deployment, all GridLab
software has been made open source, with availability from
http://www.Gridlab.org.

By combining a simple, flexible API with support for key
programming languages and Grid middleware packages, we
are confident the GAT has strong potential to provide the
general-purpose, high-level API that application developers
have been seeking in recent years. Given its open design, the
GAT will be able to adapt to upcoming middleware layers
(e.g., the WSRF framework) without forcing end users to
explicitly confront and address the specific details of these
systems.
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